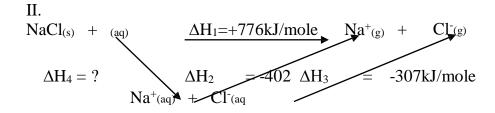

KAPSABET BOYS TRIAL 1 2025 MARKING SCHEME

CHEMISTRY PAPER 2 MS

- 1. a) i) Atomic number increases; number of protons increase
- ii) Atomic radius decreases / reduces; due to the additional protons // increase in nuclear charge hence energy levels are pulled closer to the nuclear


- c) i) 2.8
- ii) 2.8.4
- d) i) P/Phosphorous ; cut off air// Prevent reaction with air// smoulders when exposed to air
- ii) Manufacture of aluminium sheets //aircraft parts// Aluminium foil// Reject manufacture of Iron sheets.
- e) White fumes are formed. The Chloride of phosphorous hydrolyses in air to form hydrogen chloride
- 2. a). i) Is water that boils above boiling point.
- It is achieved by raising pressure of water
- ii) To melt the sulphur.
- Boiling water is at 100°C while sulphur melts at 113°C
- iii) Monoclinic sulphur (stable at temperatures above 96°C)
- iv) Plastic sulphur
- b) i) Electrode that serves only as a source or sink for electrons without playing a chemical role in the electrode reaction
 - ii) To increase the surface area for dissolving of the gas.
- iii) I. The pH lowers as $SO_{2(g)}$ formed dissolves in water forming H_2SO_3 which is acidic
- II pH lowers as concentration of H⁺ increases due to deposition of cu²⁺ leaving H⁺ ions in solution

iv) I.
$$4OH^{-}_{(aq)} \longrightarrow 2H_{2}O_{(l)} + O_{2(g)} + 4e^{-}$$
II. $4H^{+}_{(aq)} + 4e^{-}$ $2H_{2(g)}$

3. a. (i) It is the energy released or absorbed when one mole of a compound is formed from its constituent elements in their standard states

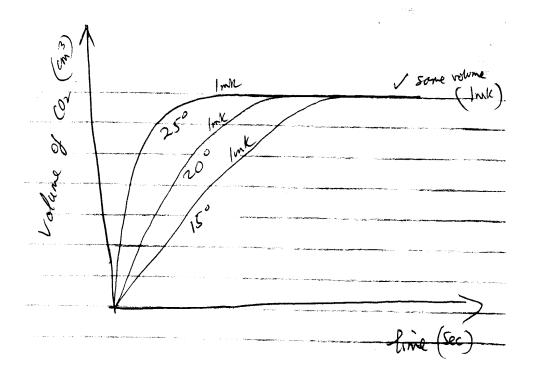
Hf θ +
$$\Delta$$
 H��₃ = 2ΔH��₁ + 3ΔHθ₂
ΔHfθ = [2(-394) + 3(-286)- (1560)] = -86kJ/mole

I a) ΔH_1 Enthalpy of lattice for NaCl(s) (1mark) b) ΔH_2 Enthalpy of hydration of Na⁺(g) (1mark)

III
$$\Delta H_4 = \Delta H_1 + \Delta H_2 + \Delta H_3$$

 $\Delta H_4 = +776 + (-402 + -371) = +3 \text{ kJ/mole}$

IV (i) - Colour of solution changes from blue to colourless
A brown solid was deposited, etc


(ii)
$$\Delta H = m \times c \times \Delta T$$

 $\Delta H = \frac{100.0}{cm^3} \text{ cm}^3 \times 1.0^{-9} \times 4200 - \times (30.0 - 20.5) \text{ K}$

$$\Delta H = -3990J$$

KAPSABET BOYS TRIAL 1 2025 MARKING SCHEME

(iii) Number of moles = $\frac{0.140000 \times 100.0}{1000.0}$ = 0.01 m0les

4. a) i)

ii) Total volume of gas evolved is equal when excess acid was reacted with same mass of calcium carbonate – graph levels off in the end.

(1mark)

The gradient of graph for 25°C in greater showing greater rate of reaction at higher temperature. Increase in temperature increases the kinetic energy of particles causing more frequent and effective collisions w.t.t.e

(1mark)

b) i) Hydrochloric acid <u>completely dissociated</u> in water producing a large amount of H+ whereas ethanoic acid only <u>partially dissociates</u> in water releasing few H⁺ ions. In ethanoic acid solution there are <u>few H⁺ available for displacement</u>. W.t.t.e. (3marks)

ii) Temperature, pressure, surface area, catalyst, etc for any one – Imark

c) i) left/backward

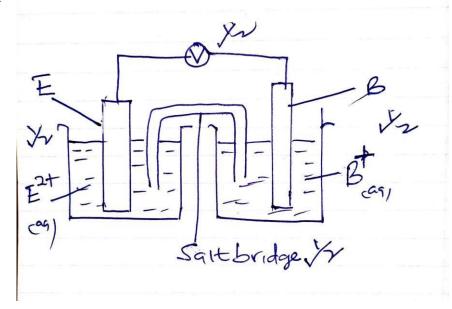
$$A_{(g)} + B_{(g)} \rightleftharpoons D_{(I)} + E_{(g)} + heat$$

Increase in temperature means heat which is a product in this case. Equilibrium shift backwards to get rid of excess heat.

ii) Right / forward

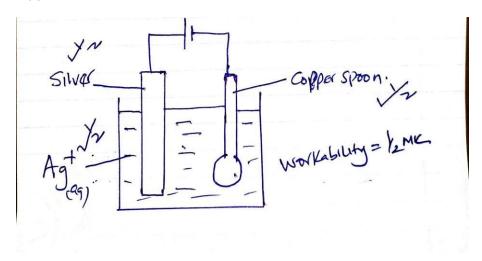
The products formed occupy a smaller volume compared to reactants.

1. (a)X+-2(3)=-1


X = +6-1

X=+5

(b) (i) I A(s). can easily lose electrons/ most electropositive/most negative electrode potential. IIC_2 . Has electrode potential of 0.00V


(ii) $E_{(s)} + 2B^+ \longrightarrow 2B_{(s)} + E^{2+} \quad E= +0.96V$

(iii) Reaction cannot take place A is more reactive than E/E cannot displace A.

(iv)

C(i)

Agt Workson

- 6. (a) (i) Al_2O_3 . $2H_2O\sqrt{1}$ // Al_2O_3 . H_2O
- (ii) (a) Iron (iii) Oxide√1
 - (b) Concentrated Sodium√1 Hydroxide // (NaOH)
 - (iii) By bubbling carbon (iv) oxide gas through the filtrate to precipitate Aluminum hydroxide which is the filtered off. $\sqrt{1/2}$
 - (iv) To lower M.p of Al_2O_3 from $2015^0C\sqrt{1}$ to 800^0C ; which is economical $\sqrt{1}$ during electrolysis // to avoid Aluminium from vaporizing if electrolysis is carried out at 2015^0C .
- (b) (i) Because the carbon anode is attacked $\sqrt{1}$ by oxygen liberated at high temperature hence the anode gradually burns $\sqrt{1}$ away.

(ii)
$$4Al^{3+}_{(l)} + 12e^{-}$$
 \longrightarrow $4Al_{(s)} \sqrt{1}$ OR $4Al^{3+}_{(l)} + 3e^{-}$ \longrightarrow $Al_{(s)}$

- (c) (i) It is light, $\sqrt{1}$ hard, strong and resistant to corrosion.
- (ii) making cooking vessels. $\sqrt{1}$
- Making overhead cables. $\sqrt{1}$
- As a reducing agent in thermite process.

(any 2x1 = 2mks)

- 7.(a) (i) Cracking $\sqrt{1}$
 - (ii) When the gas is burnt in air $\sqrt{1}$ it burns with a pale blue flame. $\sqrt{1}$ OR

Does not decolourize $\sqrt{1}$ purple acidified <u>potassium manganate (VII).</u> $\sqrt{1}$

(iii) I. A. Ethane $\sqrt{1}$ II. B 1- Chloroethane $\sqrt{1}$

(iv)

$$\begin{array}{c|cccc}
H & H & \\
\hline
C & \hline
C & \\
H & H & n\sqrt{1}
\end{array}$$

- (v) (i) Combustion $\sqrt{1}$
 - (ii) Dehydration√1
- (vi) Conc. $H_2SO_{4\sqrt{1}}$

Temperature of 170°C. $\sqrt{1}$

- (b) (i) Pent-2-ene $\sqrt{1}$
 - (ii) Prop-1-yne

KAPSABET BOYS TRIAL 1 2025 MARKING SCHEME